

MATLAB Marina – MATLAB Debugger

Learning Objectives
1. Be able to use the MATLAB debugger to set breakpoints and debug programs

Terms
syntax error, run time error, logic error, breakpoint, single step (step)

MATLAB Functions, Keywords, and Operators
None

MATLAB Debugger
MATLAB provides debugging capabilities via breakpoints and debug commands. Breakpoints
are executable lines in the program or function that MATLAB can pause execution at while
running the program.

MATLAB supports three types of breakpoints:
• Standard breakpoints where the program will pause at the specified line.
• Conditional breakpoints where the program will pause at the specified line only if the

specified condition is met.
• Error breakpoints where the program will pause at a line only if a specified problem occurs

(warning, error, NaN/infinite).

Standard breakpoints can be set by opening the program or function in the MATLAB editor and
clicking on the line in the breakpoint alley (column just to right of line numbers). Lines that
breakpoints can be set at are indicated by dashes. Standard breakpoints show up as grey (if
program not saved) or red dots in the breakpoint alley. Conditional breakpoints can be set by
selecting the breakpoint, right clicking and choosing Set/Modify Condition. You can then add a
condition and hit ok to save the condition. Conditional breakpoints show up as yellow dots in
the breakpoint alley. Breakpoints can be deleted in a similar manner. Breakpoints can also be
set, cleared, enabled/disabled using the Breakpoints menu in the editor toolbar.
Breakpoints do not persist after you exit the MATLAB session.

Error breakpoints are not set at specific lines. Error breakpoints can be set by choosing the
desired error handling, such as Pause on Errors, in the Run menu in the editor toolbar

When a program with breakpoints is run, MATLAB will enter debug mode (command line cursor
changes from >> to K>>) and pause execution at the breakpoints. With execution paused, one
can examine the current workspace and perform operations in the Command Window. Variable
values can also be inspected by placing the mouse curser on the variable. While program is
paused during debugging, variable values can be changed and code can be modified although it
is generally better to this after the debug run is finished so that changes can be tracked.

2

When in debug mode, the Run portion of the toolbar will show options for: Continue, Step, Step
In, Step Out, and Run to Curser. Continue will resume execution until completion or until
another breakpoint is encountered. Step will execute the current statement. Step In will step
into a called function and execute the next statement. Step Out will execute the rest of the
function, step out of the function and pause the program. Run to Curser executes the program
to point where curser is. Debugging can be quit by choosing Quit Debugging.

Debugging Example
Consider the program of Figure 1 that performs a running concatenation of positive numbers
read from the user and creates a string.

Figure 1. Running Concatenation of Positive Numbers Read from user

For the running concatenation, the initial result is an empty vector and each new valid value is
concatenated to the end of the current vector of values. Running concatenations can be used to
create vectors of the same data type, for examples vectors of numbers or vectors of characters
(strings).

Consider modifying the running concatenation of numbers of Figure 1 to read in and save
characters read from the user. Using a sentinel as in the example of Figure 1 for numbers would
be nice; what would be a good sentinel for reading in characters? Possibly the empty set as
other characters even the special ones might be desirable to use (there is a special end of file
(eof) character when performing file input and output). The program of Figure 2a is a first
attempt at the running concatenation of characters.

Figure 2a. Attempt 1, Running Concatenation of Characters Read from User

% read in and save values until negative number entered
values = [];
newValue = input('Enter value (- number to stop): ');
while (newValue >= 0)
 values = [values, newValue];
 newValue = input('Enter value (- number to stop): ');
end

disp('Values are: '),disp(values);

% read in and save characters until terminating character read
characters = [];
newChar = input('Enter character(empty set to stop): ','s');
while (characters ~= [])
 character = [characters, newChar];
 newChar = input('Enter character(empty set to stop): ','s')
end

disp('Characters are: '),disp(characters);

3

A sample run of the program of Figure 2a is shown in Figure 2b.

Figure 2b. Result of Running Program of Figure 2a

There are no syntax errors, but the program does not do what was hoped. One character (an a)
is read in, but no characters are saved, and the program terminates before receiving the
terminating indicator of the empty set.

The MATLAB debugger can be used to set breakpoints as shown in Figure 2c. Running the
program with the breakpoints, MATLAB enters debug mode. The program is executed until the
first breakpoint is reached (line 4). At the breakpoints one can examine workspace variables
and see if the program is doing what was expected. To run to the next breakpoint, select the
Step button in the Editor Toolstrip (or hit F10).

Figure 2d shows what appears in in the MATLAB Command Window while stepping through the
program. As the program is stepped through, execution stops at line 4, then line 5, then pauses
for the user input, but never gets to line 7 or line 8. The while loop in the program is never
executed. This is because the condition (characters ~= []) is never true. This condition always
evaluates to the empty set (not true or false) and MATLAB does not treat the empty set as true.

Figure 2c. Program with Breakpoints Set using MATLAB Editor

Enter character(empty set to stop): a
Characters are:
>>

4

Figure 2d. MATLAB Command Window During Debugging

Figure 2e shows the next attempt with the terminating character changed to a ~.

Figure 2e. Attempt 2, Running Concatenation of Characters Read from User

The program of 2e does not execute as it has a syntax error. The error message is shown in
Figure 2f. This error message is not very descriptive, but line 6 is the line while
(characters ~= ~). The syntax error is due to not enclosing the ~ character in single
quotes to indicate that it is a character.

Figure 2f. Error Message from Running Program of Figure 2e

The program of Figure 2e has two additional logic errors in addition to the syntax error. The
logic expression in the while statement should compare newChar not characters, which is
the result vector, to the terminating character. The concatenating operation uses the variable
character instead of the variable characters on the left side of the assignment. This will
mean that each iteration, the value of newChar and characters will be concatenated but
the result is saved in the variable character which is then not used for the next
concatenation, i.e. nothing is saved but the last character read in before the terminating
character.

There is also a style issue, in that the input line inside the while loop body is not terminated
with a semicolon and thus the user input will be echoed during the execution of the script. The
fully corrected program is shown in Figure 2g.

% read in and save characters until terminating character read
characters = [];
newChar = input('Enter character(~ to stop): ','s');
while (characters ~= ~)
 character = [characters, newChar];
 newChar = input('Enter character(empty set to stop): ','s')
end

disp('Characters are: '),disp(characters);

Error: File: Untitled.m Line: 6 Column: 23
Unbalanced or unexpected parenthesis or bracket.

5

Figure 2g. Final Version of Running Concatenation of Characters Read from User

Debugging Tips
Helpful tips for debugging:
• Syntax errors can be detected by running the program. MATLAB will identify the line

number and type of error although the error message will not always clearly point to the
error and some errors are actually caused by omitting statements prior to the line the error
is indicated at (using a variable before it has been assigned a value).

• Logic errors can be identified using the MATLAB debugger and stepping through the
program, examining the workspace variables at each step, and checking that the behavior is
what it should be.

• Break the program/function up into sections. Implement and test each section separately.
This helps to isolate errors to small sections of code.

• Make sure the sections are sequenced correctly. Sections that rely on operations in another
section of the program must be placed after that section.

• When possible, test complex programs for simple cases with known solutions first. For
example, when testing a program that approximates a cosine function using a Taylor series,
test it first for known values of the cosine function (0, 45, 90 degrees).

Last modified January 24, 2022

 MATLAB Marina is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

% read in and save characters until terminating character read
characters = [];
newChar = input('Enter character(~ to stop): ','s');
while (newChar ~= '~')
 characters = [characters, newChar];
 newChar = input('Enter character(empty set to stop): ','s');
end

disp('Characters are: '),disp(characters);

http://www.matlabmarina.com/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

	MATLAB Marina – MATLAB Debugger
	Learning Objectives
	Terms
	MATLAB Functions, Keywords, and Operators
	MATLAB Debugger
	Debugging Example
	Debugging Tips

